
PmcTools: Whole-system, low-overhead
performance measurement in FreeBSD

Joseph Koshy

FreeBSD Developer

18 April 2009

Joseph Koshy (FreeBSD Developer) FreeBSD/PmcTools 18 April 2009 1 / 48



Outline

1 Introduction
Introducing PmcTools

2 PmcTools
Architectural Overview
API
Design Issues
Profiling
Implementation

3 Status & Future Work
Status
Future Projects
Research Topics

4 Conclusion

Joseph Koshy (FreeBSD Developer) FreeBSD/PmcTools 18 April 2009 2 / 48



Introduction

Goals Of This Talk

Introduce FreeBSD/PmcTools.
Introduce BSD culture.

Joseph Koshy (FreeBSD Developer) FreeBSD/PmcTools 18 April 2009 3 / 48



Introduction

About FreeBSD

http://www.freebsd.org/
Popular among appliance makers, ISPs, web hosting providers:

Fast, stable, high-quality code, liberal license.

FreeBSD culture in one sentence: “Shut up and code”.

Joseph Koshy (FreeBSD Developer) FreeBSD/PmcTools 18 April 2009 4 / 48



Introduction

About jkoshy@FreeBSD.org

FreeBSD developer since 1998.
Technical interests:

Performance analysis; the design of high performance software.
Low power computing.
Higher order, typed languages.
Writing clean, well-designed code.

Joseph Koshy (FreeBSD Developer) FreeBSD/PmcTools 18 April 2009 5 / 48



Introduction

The Three Big Questions in Performance Analysis

1 What is the system doing?
2 Where in the code does the behaviour arise?
3 What is to be done about it?

Joseph Koshy (FreeBSD Developer) FreeBSD/PmcTools 18 April 2009 6 / 48



Introduction

Question 1: What is the system doing?

System behaviour:
Traditional UNIX tools: vmstat, iostat, top, systat, ktrace,
truss.
Counters under the sysctl hierarchy.
Compile time options such as LOCK PROFILING.
New tools like dtrace.

Machine behaviour:
Modern CPUs have in-CPU hardware counters measuring
hardware behaviour: bus utilization, cache operations, instructions
decoded and executed, branch behaviour, floating point and vector
operations, speculative execution, . . .
Near zero overheads, good precision.

Joseph Koshy (FreeBSD Developer) FreeBSD/PmcTools 18 April 2009 7 / 48



Introduction

Question 2: Which portion of the system is
responsible?

Which subsystems are involved?
Where specifically in the code is the problem arising?
System performance is a “global” property.

“Local” inspection of code not always sufficient.
As a community we are still exploring the domain of performance
analysis tools:

Which data to collect.
Collecting it with low-overheads.
Making sense of the information collected.

Joseph Koshy (FreeBSD Developer) FreeBSD/PmcTools 18 April 2009 8 / 48



Introduction Introducing PmcTools

1 Introduction
Introducing PmcTools

2 PmcTools
Architectural Overview
API
Design Issues
Profiling
Implementation

3 Status & Future Work
Status
Future Projects
Research Topics

4 Conclusion

Joseph Koshy (FreeBSD Developer) FreeBSD/PmcTools 18 April 2009 9 / 48



Introduction Introducing PmcTools

PmcTools Project Goals

Have Fun!

Measurements

Low−overheads

FreeBSD Tier−1

Use in production

Architectures

Platform for

PmcTools

Whole−system

Interesting tools

Joseph Koshy (FreeBSD Developer) FreeBSD/PmcTools 18 April 2009 10 / 48



Introduction Introducing PmcTools

Performance Analysis: Conventional vs. PmcTools

Description Conventional PmcTools
Need special binaries Yes No
Dynamically loaded objects No Yes
Profiling scope Executable Process & System
Need restart Yes No
Measurement overheads High Low
Profiling tick Time Many options
Profile inside critical sections No Yes (x86)
Cross-architecture analysis No Yes
Distributed profiling No Yes
Production use No Yes

Joseph Koshy (FreeBSD Developer) FreeBSD/PmcTools 18 April 2009 11 / 48



Introduction Introducing PmcTools

Related open-source projects

Linux Many projects related to PMCs:
Oprofile: http://oprofile.sourceforge.net/
Perfmon: http://perfmon2.sourceforge.net/
Perfctr: http://sourceforge.net/projects/perfctr/
Rabbit: http://www.scl.ameslab.gov/Projects/Rabbit/

Solaris CPC(3) library.
NetBSD A pmc(3) API.

Joseph Koshy (FreeBSD Developer) FreeBSD/PmcTools 18 April 2009 12 / 48



PmcTools Architectural Overview

1 Introduction
Introducing PmcTools

2 PmcTools
Architectural Overview
API
Design Issues
Profiling
Implementation

3 Status & Future Work
Status
Future Projects
Research Topics

4 Conclusion

Joseph Koshy (FreeBSD Developer) FreeBSD/PmcTools 18 April 2009 13 / 48



PmcTools Architectural Overview

Overview: Architecture

libpmc

kernel

p
ro

ce
ss

log

p
ro

ce
ss

p
ro

ce
ss

hwpmc

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

C
P

U

A platform to build tools that use PMC data.

Joseph Koshy (FreeBSD Developer) FreeBSD/PmcTools 18 April 2009 14 / 48



PmcTools Architectural Overview

Components

hwpmc kernel bits
kernel changes (see later)

libpmc application API
pmccontrol management tool

pmcstat proof-of-concept application
pmcannotate contributed tool

etc... others in the future

Joseph Koshy (FreeBSD Developer) FreeBSD/PmcTools 18 April 2009 15 / 48



PmcTools Architectural Overview

PMC Scopes

#1

CPU 1 CPU 2 CPU 3

Process−scope PMC

System−scope PMC

#0

#2

#3

#4

CPU 0

1 process-scope PMC & 2 system-scope PMCs simultaneously active.

Joseph Koshy (FreeBSD Developer) FreeBSD/PmcTools 18 April 2009 16 / 48



PmcTools Architectural Overview

Counting vs. Sampling

System−scope,Process−scope,

Process−scope, System−scope,

Counting Counting

Sampling Sampling

Joseph Koshy (FreeBSD Developer) FreeBSD/PmcTools 18 April 2009 17 / 48



PmcTools Architectural Overview

Using system-scope PMCs

p
ro

ce
ss

kernel

p
ro

ce
ss

Three system scope PMCs, on three CPUs.
Measure behaviour of the system as a whole.

Joseph Koshy (FreeBSD Developer) FreeBSD/PmcTools 18 April 2009 18 / 48



PmcTools Architectural Overview

Using process-scope PMCs

kernel

o
w

n
er

ta
rg

et

2: attach

1
: 

al
lo

ca
te

A process-scope PMC is allocated & attached to a target process.
Entire “row” of PMCs reserved across CPUs.

Joseph Koshy (FreeBSD Developer) FreeBSD/PmcTools 18 April 2009 19 / 48



PmcTools API

1 Introduction
Introducing PmcTools

2 PmcTools
Architectural Overview
API
Design Issues
Profiling
Implementation

3 Status & Future Work
Status
Future Projects
Research Topics

4 Conclusion

Joseph Koshy (FreeBSD Developer) FreeBSD/PmcTools 18 April 2009 20 / 48



PmcTools API

API Overview

Categories:
Administration (2).
Convenience Functions (8).
Initialization (1).
Log file handling (3).
PMC Management (10).
Queries (7).
Arch-specific functions (1).

32 functions documented in 15 manual pages. 10 manual pages for
supported hardware events.

Joseph Koshy (FreeBSD Developer) FreeBSD/PmcTools 18 April 2009 21 / 48



PmcTools API

Example: API Usage

read

start

attach

allocate

release

stop

pmc allocate() Allocate a PMC; returns a handle.
pmc attach() Attach a PMC to a target process.
pmc start() Start a PMC.
pmc read() Read PMC values.
pmc stop() Stop a PMC.
pmc release() Release resources.

Joseph Koshy (FreeBSD Developer) FreeBSD/PmcTools 18 April 2009 22 / 48



PmcTools Design Issues

1 Introduction
Introducing PmcTools

2 PmcTools
Architectural Overview
API
Design Issues
Profiling
Implementation

3 Status & Future Work
Status
Future Projects
Research Topics

4 Conclusion

Joseph Koshy (FreeBSD Developer) FreeBSD/PmcTools 18 April 2009 23 / 48



PmcTools Design Issues

PMCs Vary A Lot

AMD Athlon XP 4 PMCs, 48 bits wide.
AMD Athlon64 4 PMCs, Different set of hardware events.
Intel Pentium MMX 2 PMCs. 40 bits wide. Counting only.
Intel Pentium Pro 2 PMCs, 40 bits for reads, 32 bits for writes.
Intel Pentium IV 18 PMCs shared across logical CPUs. En-

tirely different programming model.
Intel Core Number of PMCs and widths vary. Has

programmable & fixed-function PMCs.
Intel Core/i7 As above, but also has per-package PMCs.

PMCs are closely tied to CPU micro-architecture.
PMC capabilities, supported events, access methods,
programming constraints can vary across CPU generations.

Joseph Koshy (FreeBSD Developer) FreeBSD/PmcTools 18 April 2009 24 / 48



PmcTools Design Issues

API Design Issues

Issues:

Designing an extensible programming interface for application use.
Allowing knowledgeable applications to make full use of hardware.

PmcTools philosophy:

Make simple things easy to do.
Make complex things possible.

Current “UI” uses name=value pairs:

% pmcstat -p k8-bu-fill-request-l2-miss,\
mask=dc-fill+ic-fill,usr

Joseph Koshy (FreeBSD Developer) FreeBSD/PmcTools 18 April 2009 25 / 48



PmcTools Profiling

1 Introduction
Introducing PmcTools

2 PmcTools
Architectural Overview
API
Design Issues
Profiling
Implementation

3 Status & Future Work
Status
Future Projects
Research Topics

4 Conclusion

Joseph Koshy (FreeBSD Developer) FreeBSD/PmcTools 18 April 2009 26 / 48



PmcTools Profiling

Conventional Statistical Profiling

Needs specially compiled binaries (cc -pg).
Sampling runs off the clock tick.

Cannot profile inside kernel critical sections.

“In-place” record keeping.
Call graph is approximated.

Joseph Koshy (FreeBSD Developer) FreeBSD/PmcTools 18 April 2009 27 / 48



PmcTools Profiling

PmcTools’ Statistical Profiling

Sets up PMCs to interrupt the CPU on overflow.
Uses an NMI to drive sampling (on x86):

Can profile inside kernel critical sections.
Needs lock-free implementation techniques.

Separates record keeping from data collection.
Captures the exact callchain at the point of the sample.

Joseph Koshy (FreeBSD Developer) FreeBSD/PmcTools 18 April 2009 28 / 48



PmcTools Profiling

Profiling with NMIs

hwpmc helper

thread

lock−less ring

buffers

per−owner

log buffer

hardclock()

CPU 2 CPU 3

NMI

record sample

hwpmc_hook()

log file

trap()

#0

#1

#2

#3

CPU 0 CPU 1

machine dependent trap handler

HWPMC(4)

low level trap handler

Joseph Koshy (FreeBSD Developer) FreeBSD/PmcTools 18 April 2009 29 / 48



PmcTools Profiling

Profiling Workflow

System/application

pmcstat

hwpmc(4) logfile

gprof

gprof(1) data

under investigation

gprof(1) output

pmcstat

Uses gprof(1) to do user reports (currently):
Needs to be redone: gprof(1) limitations.

Call chains are captured and used to generate call graphs.

Joseph Koshy (FreeBSD Developer) FreeBSD/PmcTools 18 April 2009 30 / 48



PmcTools Profiling

Profiling of Shared Objects

rtld

0 0xFFFFFFFF

te
x
t

arguments

text data bss stackheap Kernelmmap

unmapped

d
a

ta

d
a

ta

d
a

ta

te
x
t

command line

Each executable object in the system gets its own gmon.out file:
kernel
kernel modules
executables
shared libraries
run time loader

Joseph Koshy (FreeBSD Developer) FreeBSD/PmcTools 18 April 2009 31 / 48



PmcTools Profiling

Remote Profiling

log data

console

analysis

measurement

system under

pmc configure log() takes a file descriptor.
Can log to a disk file, a pipe, or to a network socket.
Events in log file carry timestamps for disambiguation.

Joseph Koshy (FreeBSD Developer) FreeBSD/PmcTools 18 April 2009 32 / 48



PmcTools Implementation

1 Introduction
Introducing PmcTools

2 PmcTools
Architectural Overview
API
Design Issues
Profiling
Implementation

3 Status & Future Work
Status
Future Projects
Research Topics

4 Conclusion

Joseph Koshy (FreeBSD Developer) FreeBSD/PmcTools 18 April 2009 33 / 48



PmcTools Implementation

Implementation Information

Module Comments
sys/dev/hwpmc,
sys/sys/pmc*.h

31K LoC, i386&amd64

lib/libpmc 3.3K LoC
usr.sbin/* 5.4K LoC
documentation 29 manual pages, 11K LoD

All public APIs have manual pages.
All hardware events, and their modifiers are documented.
The internal API between libpmc and hwpmc is also documented.

See also: “Beautiful Code Exists, If You Know Where To Look”, CACM,
July 2008.

Joseph Koshy (FreeBSD Developer) FreeBSD/PmcTools 18 April 2009 34 / 48



PmcTools Implementation

Impact on Base Kernel

Space Requirements 2 bits (P HWPMC, TDP CALLCHAIN). Uses free
bits in existing flags words.

Kernel Changes Clock handling, kernel linker, MD code, process
handling, scheduler, VM (options HWPMC HOOKS).

Kernel Callbacks

hwpmc

scheduler

kernel linker

VM (mmap)

exec

low−level (assembler)

clock handling

trap()

Joseph Koshy (FreeBSD Developer) FreeBSD/PmcTools 18 April 2009 35 / 48



PmcTools Implementation

Portability

Application Portability High.
Portability of libpmc Moderate. Requires a POSIX-like system.
Adding support for new PMC hardware Moderate.
Kernel bits Low.

Joseph Koshy (FreeBSD Developer) FreeBSD/PmcTools 18 April 2009 36 / 48



Status & Future Work Status

1 Introduction
Introducing PmcTools

2 PmcTools
Architectural Overview
API
Design Issues
Profiling
Implementation

3 Status & Future Work
Status
Future Projects
Research Topics

4 Conclusion

Joseph Koshy (FreeBSD Developer) FreeBSD/PmcTools 18 April 2009 37 / 48



Status & Future Work Status

Current State

Proof-of-concept application pmcstat is the current “user
interface”.

Crufty.

Low overheads (design goal: 5%) and tunable.
In production use. Being shipped on customer boxes by appliance
vendors.
Support load on the rise (esp. requests for support of new
hardware).

Joseph Koshy (FreeBSD Developer) FreeBSD/PmcTools 18 April 2009 38 / 48



Status & Future Work Status

Support load

Volunteer project. Initial hardware bought from pocket, or on loan.
Current hardware support:

12 combinations of {PMC hardware × 32/64 bit OS variants} × 9
OS versions [FreeBSD 6.0 · · · 6.4, 7.0 · · · 7.2, 8.0] = 108
combinations!
Need a hardware lab to manage testing and bug reports.

Need an automated test suite that is run continuously.
Also useful for detecting OS & application performance regressions
early.

Email support load is on the rise:
Rise in FreeBSD adoption.
FreeBSD users and developers worldwide now chipping in with
features, bug fixes, offering tutorials and spreading the word.

Joseph Koshy (FreeBSD Developer) FreeBSD/PmcTools 18 April 2009 39 / 48



Status & Future Work Future Projects

1 Introduction
Introducing PmcTools

2 PmcTools
Architectural Overview
API
Design Issues
Profiling
Implementation

3 Status & Future Work
Status
Future Projects
Research Topics

4 Conclusion

Joseph Koshy (FreeBSD Developer) FreeBSD/PmcTools 18 April 2009 40 / 48



Status & Future Work Future Projects

Profiling the Cloud

traffic

Control/Data

Analysis Console

Joseph Koshy (FreeBSD Developer) FreeBSD/PmcTools 18 April 2009 41 / 48



Status & Future Work Future Projects

Other project ideas

A graphical visualizer “console”.
Enhance gprof, or write a report generator afresh.
Link up with existing profile based optimization frameworks.
Allow performance analysis of non-native architectures.
Support non-x86 PMCs.
Integrate PmcTools and DTrace.
Port to other BSDs and/or OpenSolaris.

Joseph Koshy (FreeBSD Developer) FreeBSD/PmcTools 18 April 2009 42 / 48



Status & Future Work Research Topics

1 Introduction
Introducing PmcTools

2 PmcTools
Architectural Overview
API
Design Issues
Profiling
Implementation

3 Status & Future Work
Status
Future Projects
Research Topics

4 Conclusion

Joseph Koshy (FreeBSD Developer) FreeBSD/PmcTools 18 April 2009 43 / 48



Status & Future Work Research Topics

Profile guided system layout

L1/L2/L3

Cache

k
er

n
el

applications

Lay out the whole system to help “hot” portions remain in cache.
Would require an augmented toolchain
(http://elftoolchain.sourceforge.net/) & enhancements to
hwpmc(4).
Useful for low end devices using direct-mapped caches.

Joseph Koshy (FreeBSD Developer) FreeBSD/PmcTools 18 April 2009 44 / 48



Status & Future Work Research Topics

Detection of SMP data structure layout bugs

struct shared
...
char sh foo;
int sh bar;
char sh buzz;
...

;

Would use a combination of static analysis & hwpmc(4) data.
Detection of the poor cache line layout behaviour.

Cache line ping-ponging between CPUs.

Joseph Koshy (FreeBSD Developer) FreeBSD/PmcTools 18 April 2009 45 / 48



Status & Future Work Research Topics

Profiling for power use

What part of the system consumes power?
Where in the code is power being spent?

Joseph Koshy (FreeBSD Developer) FreeBSD/PmcTools 18 April 2009 46 / 48



Conclusion

1 Introduction
Introducing PmcTools

2 PmcTools
Architectural Overview
API
Design Issues
Profiling
Implementation

3 Status & Future Work
Status
Future Projects
Research Topics

4 Conclusion

Joseph Koshy (FreeBSD Developer) FreeBSD/PmcTools 18 April 2009 47 / 48



Conclusion

Talk Summary

FreeBSD/PmcTools was introduced.
The design & implementation of PmcTools was looked at.
Possible future development and research directions for the
project were touched upon.

Joseph Koshy (FreeBSD Developer) FreeBSD/PmcTools 18 April 2009 48 / 48


	Introduction
	Introducing PmcTools

	PmcTools
	Architectural Overview
	API
	Design Issues
	Profiling
	Implementation

	Status & Future Work
	Status
	Future Projects
	Research Topics

	Conclusion

