
An Invitation to Collaborate
Building best-in-class tools for understanding system behavior

jkoshy@ 2023-11-17

What’s this about?

I am looking for people to collaborate with, for building best-in-class tools for
understanding ‘whole system’ behavior.

The tools will initially target the BSD family of OSes, but portability is an explicit
goal.

The tools are for software developers and for those learning about operating
systems, compilation techniques and hardware design. Clear, scaffolded
documentation is an explicit goal.

FreeBSD history: hwpmc(4) + tools

Early 2000s:

● Came across the Anderson et al.
(1997) paper, and wanted a similar
facility on FreeBSD.

● Took off from work to design and
implement this.

● Developed in FreeBSD’s Perforce
repo, moved into FreeBSD CVS in
2005 [link].

https://svnweb.freebsd.org/base?view=revision&revision=145256

FreeBSD history: hwpmc(4) + tools

● Intent: enable self-profiling of
apps using cheap RDPMC
instructions (on x86).

● Added sampling and callchain
capture off NMIs later.

● Wrote BSD libelf along the way
in order to parse ELF.

All very cool, but open-source didn’t
pay those days, and I needed to get
back to earning a living …

https://svnweb.freebsd.org/base?view=revision&revision=147191
https://svnweb.freebsd.org/base?view=revision&revision=174395
https://svnweb.freebsd.org/base?view=revision&revision=174395

What wasn’t tackled back then

● Portability to other platforms.
○ FreeBSD only (ENOTIME, ENOCLUE).

● Setting up clear processes for stakeholders
○ It was not even clear who the stakeholders were at that time.

● Graded documentation (scaffolding for new users).
○ Only manual pages were written.

● Tools to visualize the data being collected; tools to analyze data.
● Integration with toolchains (e.g. cc -pg, etc).
● Integration with other measurement tools (e.g. DTrace).

But it was useful! The community stepped in

Good stuff:

● Support for new CPUs (particularly for x86)!
● New architecture support!
● Some nice features added.

○ Along with some puzzling ones …

But also:

● Complaints now of tools not working / being unmaintained.
● Is self-profiling being used at all?
● Actual utility is yet to be addressed:

○ What does the low-level data collected actually mean? How does one interpret it?
○ How do we correlate low-level measurements with other system behavior of interest?
○ How can we visualize what the system is doing? What about tools for ‘batch’ analyses?

Today: Usability, Sustainability, Reach
So, What’s Next?

New
Features

PortabilityCommunity
Processes

Testability

Visualization

Batch
Analysis Documentation

Sustainability

New Hardware Capabilities

● Needs a change of programming model.
● New types of performance monitoring features.

○ E.g. Hardware assisted branch tracing.
● Systems with mixed CPU types!

○ E.g. ARM®.
● Complex constraints around PMC usage.
● Many more architectures now offer PMCs.

○ With their own quirks.
● Performance measurement counters in I/O buses, GPUs, NPUs,

peripherals, etc.
○ Need a way to integrate all of these.

Community: ‘RFC’/’PEP’-like Design Process

● Goal: coordinate effort, fewer surprises, make it easier to contribute.
● Open to all stakeholders.
● Provide a venue for constructive feedback.
● Provide transparency about upcoming changes.
● Where? On a BSD-project agnostic avenue with good tools for

collaboration (maybe Github?).

http://github.com

Portability

● Portability of code
○ hwpmc(4) is very much tied to the FreeBSD kernel.
○ For the next iteration, define interface boundaries between (a) the OS and (b) PMC

hardware.
○ Targets: Two *BSDs (FreeBSD & NetBSD)

■ Maybe one microkernel (Minix?, L4?), and maybe one non-*nix open-source OS.
■ Eventually other platforms via the community RFC process.

○ User-space tools intended to be portable to *BSD, GNU/Linux, etc.
● Portability of Skills

○ Goals: facilitate sharing of knowledge, processes, tools and techniques for performance
analysis across OSes, both production and research.

Testability

● Permit (kernel) modules to be built and tested in user space:
○ Eases development.
○ Eases continuous integration.
○ Eases performance optimization of the kernel modules themselves.

● Inspired by the “Rump kernel” (Flexible Operating System Internals: The
Design and Implementation of the Anykernel and Rump Kernels, Antti
Kantee, 2012).

https://aaltodoc.aalto.fi/handle/123456789/6318
https://aaltodoc.aalto.fi/handle/123456789/6318

Interoperability With Other Tooling

● Align with ongoing
standardization efforts.

● Example: the Common Trace
Format.

● Could we integrate with Open
Telemetry?

https://diamon.org/ctf/
https://diamon.org/ctf/
https://opentelemetry.io
https://opentelemetry.io

Interoperability: Interactive Visualization

● Integrate with visualization tools (like
Trace Compass).

○ Or write our own?
● Aim: visualize hardware, kernel &

application behavior all together.
○ See hardware behavior, kernel scheduling,

CPU voltages & frequencies, database
transactions ⸺ at a glance.

○ Trace data ‘flows’ through the system.
○ Share & collaborate on traces (like

Perfetto).
● Multi-system tracing.

○ For the distributed/IOT world.
○ hwpmc(4) already has partial support. Example UI (Trace Compass)

https://www.eclipse.org/tracecompass/
http://perfetto.dev

Integrated Operation (Example)

Integrated changes (across kernel & userspace) are one of BSD’s strengths:

● E.g. control PMC-1 based on PMC-2 [e.g. turn on/off PMC-1 on PMC-2’s
overflow].

● Turn on/off PMC measurements from DTrace triggers.
○ E.g. measure L3 misses along a specific kernel execution path.

● Or: Turn on/off DTrace triggers based on PMC measurements.
● Needs low-overhead extensibility:

○ In-kernel and in userspace, with type safety and efficient execution.
○ BPF-like but easier to program in?
○ Easy scripting of ‘performance hypotheses’ during performance debugging?

Automated Analysis of Traces

● Support batch-style
automated analysis of
performance data.

● Using an extensible data
format.

● Efficient to query, e.g.
SLOG-2.

Documentation

● Effective documentation is crucial.
● Matrix of documentation types

○ From: Cameron Shorter, 2018.
● Documentation to be written:

○ CPU/System docs (ideally from system
vendors).

○ Generic tutorials on using these tools.
○ System-specific ‘How Tos’ and overviews.
○ Task-specific ‘How Tos’.

● Processes to manage the above.

https://cameronshorter.blogspot.com/2018/06/technical-documentation-writing.html

Sustainability

Bring in new people to *BSD:

● Hopefully these tools would help students gain excellent visibility into
*BSD system behavior.

Sustainability for developers themselves:

● Being looked at.
● Hopefully more sustainable than 2004/05.

Interested?

Please get in touch: jkoshy@FreeBSD.org, or jkoshy@NetBSD.org.

mailto:jkoshy@FreeBSD.org
mailto:jkoshy@NetBSD.org

